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A Special Class of Bell Polynomials

By F. T. Howard

Abstract. We examine the integers V(n, k) defined by means of
©o
KT Vn, x"nt = [xE® + 1) — 2¢* — 1)]¥,
n=0

and, in particular, we show how these integers are related to the Bernoulli, Genocchi
and van der Pol numbers, and the numbers generated by the reciprocal of & —x—1.
We prove that the V(n, k) are also related to the numbers W(n, k) defined by

oo

KE W 05"t = [ - 2" - 1)
n=

in much the same way the associated Stirling numbers are related to the Stirling
numbers. Finally, we examine, more generally, the Bell polynomials

Bn,k(“l’ ay,3—0a,4—a,5—a,...) and show how the methods of this paper can
be used to prove several formulas involving the Bernoulli and Stirling numbers.

1. Introduction. For n and k nonnegative integers, define V(n, k) by means of
k

an & fj V(n, kx"/n! = [x(e* + 1) —2(¢* - D]* = i (n —2)x"/n!

n=0 n=3

Thus, V(n, k) = B, (0,0, 1,2, 3, .. .), the exponential partial Bell polynomial [2,
p. 133].

One purpose of this paper is to derive properties of V(n, k) and, in particular,
to show how the V(n, k) are related to certain special sequences of numbers. For ex-
ample, in Section 4 we show that if G,, is the nth Genocchi number, then

G, =:=i: jilxd (nV(n - Li)—(Z) Vin —2,1’)),

and we prove similar equations involving the Bernoulli numbers, the van der Pol num-
bers, and the numbers generated by the reciprocal of €* —x — 1. (All of these special
numbers are defined in Section 2.) Thus, the V(n, k) provide a link between these
special numbers which is not obvious.

In Section 5 we look, more generally, at the Bell polynomials
r)‘n,k(al, a2', 3-a,4—-0a,5—a,...);and we show how the results of Section 4 can
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978 F. T. HOWARD

be generalized. Using the theorems of Section 5, we prove several of the formulas in
[2], [10] and [11] involving the Bernoulli and Stirling numbers.

We begin with a preliminary section in which we state the basic definitions and
theorems that we need.

2. Preliminaries. The exponential partial Bell polynomials B, @, ay,a5,...)

in an infinite number of variables a,, a,, a5, . . . can be defined by means of
@.1) > > *
: k! 3 B, @y, a5, ... 1" /n! =( > amx”’/m!> .
n=0 m=1
Certain special cases are well known; for example, B, (1,1, 1,...) =8, k), the

Stirling number of the second kind, and Bn’k(O, 1,1,...)=_8,(n k), the associated
Stirling number of the second kind [4], [11, p. 77]. It follows that

2.2) Bn’k(O, 2,3,4,...)=n!8(n -k, k)/(n - k),
2.3) Bn,k(O, 0,3,4,...)=n!S,(n—k k)/(n-k).
Next we define R, (aq, @,, a,, . . . ) by means of

had oo -1
@4 > R,O,...,0,a,,a,.,,...%"/n! =(a,x'/r!)<z a,x"/i!> .
n=0

=r

We are assuming r > 0 and a, # 0.
There are useful relationships between B, +@y,a,,...)and R, (ag, a;, a,, .. .)
which we state in the next theorem [2, p. 142], [6].

THEOREM 2.1. B, ,(ay, a,, . ..)is defined by (2.1)and R ,(ay, a,, a,, - . .) is de-
fined by (2.4), then

R,(©,...,0, Qplyyy,...)

n (—a,)nlji(ry
— _——*Bni-rj,j(o’ ..., 0, Qi1 pyns - - )

=1 @+

oty (71 1)

(n + n)!

n
=2
=1

ByirifOs -, 0,a,a,, 4, .. ).

Also useful for our purposes are theorems relating B,:©,...,0,a,a,, ,,...)
nd B, ,©,...,0,a,,4,4a,,,,...). There are several such theorems proved in [2]
nd [5]; in particular we have the following:

THEOREM 22. Forr>0,k >0,

(r!/a,)"Brn+k,n(O, ey 0,a,a,,4,...)

=(m+Em+k-1)...(+ DP, (),
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where P, ,(n) is a polynomial in n of degree < k. (The degree is k ifa,,, #0.) In
fact

k n(n=1)...(n—j+1)ay

P .(n)= B ©,...,0,a,,,,a,.,...).
r,k() j; (rj+k)! r1'+k,1( r+1> “r+2 )

We could use this theorem to prove that S(n, n — k) is a polynomial in n of de-
gree 2k. In fact,

& P n
@5) S(n,n—k)-j:;o S,k =j, k=) <2k_].),

which is the principal reason the associated Stirling numbers were first defined.

We conclude this section by defining the special numbers which are related to
W(n, k).

The Bernoulli number B,, is defined by means of

(2.6) xE -1y = Zo B,x"/n!, soB,=R,0,0,2,3,4,...).
n=

The Genocchi number G, is defined by means of

Q7) 2x(e* + 1y ' = 3 Gx"/n!, s0G,, /(n+1)=R,0,2,2,3,4,...).
n=0

It is known [2, p. 49] that G,, = 2(1 — 22™)B, ..
The van der Pol number ¥V, is defined by means of

G3/6)[x(e* + 1) - 2(* - D]

28 -

= V,x"/n!, soV,=R,0,0,0,1,2,3,...).
n=0

The van der Pol numbers have been the subject of several recent papers [8], [9].
They are closely related to the Rayleigh function of order 3/2.
The number A, is defined by means of

29) *2)e* —-x~-1y'= ¥ A,x,/n!, sod,=R,0,0,0,3,4,5,...).
n=0

These numbers, which are similar to the Bernoulli numbers, have been examined in
[3] and [6].
The number W, is defined by means of

—4[x(e® — 1) = 2(e* + 1)]7!
(2.10)

= W, x"/n!, soW, =R, (-4,-2,0,1,2,3,...).
0 n n n
n=
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These numbers are discussed in [7] and [10] and are closely related to the Rayleigh
function of order —3/2.

3. Properties of V(n, k). Like all Bell polynomials, V(n, k) has a fairly simple
combinatorial interpretation. Consider a set partition of {1, 2, . . ., n} into k blocks,
each block containing at least three elements. If a block has m elements, assign it a
“weight” of m — 2. Then define the weight of the partition as the product of the
weights of the blocks. It follows from (1.1) that V(n, k) is the sum of the weights of
all the set partitions of {1, 2, . . ., n} into k blocks, each block having at least three
elements. For example, there are (;) = 35 set partitions of {1, 2, 3,4, 5, 6, 7} into
two blocks, each block with at least three elements. Clearly, one block has three ele-
ments and the other has four elements, so each partition has weight 2. Thus, V(7, 2)
=70.

It is clear from this interpretation, or from (1.1), that V(r, 0) = 0if n > 0,
Vin,1)=n—-2ifn> 1, V(n, k) = 0if n < 3k and V(3k, k) = (3k)!6 % /k!. Also,
(0,0)=1.

The following recurrence formula can be proved.

Bl 2Vn+1,k)=F&+n)V(n k)—knV(n—1,k) + n(n — 1)V(n -2,k - 1).

To prove (3.1), define the polynomial ¥, (¥) by means of

(32) exp y[x(e* + 1) -2(* - 1)] = 3 V,(y)"/nl.
n=0

It follows that

33) V,00= 3 Vi, kp.
k=0

Now take y(x — 1) times the partial derivative of (3.2) with respect to y and subtract
(x — 2) times the partial derivative of (3.2) with respect to x. Comparing coefficients
of x"y¥, we have (3.1). Using (3.1), we can compute the following values of ¥(n, k).

nk 1 2 3 4
3 1

4 2

5 3

6 4 10

7 5 70

8 6 308

9 7 1092 280

10 8 3414 4200

11 9 9834 36960
12 10 26752 249480 15400
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Other recurrence formulas can be found. If we take the partial derivative of
(3.2) with respect to x, subtract y times the partial derivative of (3.2) with respect to
v and compare coefficients of x"y¥, we have

n—2 n
34) Vi + LK) =kV(n k) + 3 (r>V(r, k- 1).
r=0

Also, from the partial derivative of (3.2) with respect to x,

n—2

3.5) Vo +1,K)=3 (’r') (n—r— )WV, k- 1).

r=0

It follows from (3.5) that V(n, k) is a nonnegative integer. It also follows that,
for k > 1, V(n, k) is even. The proof is by induction on k. If &k = 2, we have, by
(3.5),

n—5

(3.6) Vin+1,2)= 3 <r ¥ 3>(n —r—4)r+ 1)

r=0

It is clear that if n is even, each term on the right side of (3.6) is even. Suppose # is
odd: n=1+2°1+---+2% Then (n—r—4)r+ 1)} ,)is even unless r + 3
=1 +el2c1 + - +es2cs,eachei=00r 1. Since3<r+3<n-2,wesee
there are 2° — 2 (an even number) of odd numbers on the right side of (3.6). Thus,
V(n + 1, 2) is even, and it now follows easily from (3.5) that V(n, k) is even for k
=>2.

We next define numbers W(n, k) which are related to V(n, k) in the same way
the Stirling numbers are related to the associated Stirling numbers. Define W(n, k)
by means of

3.7 k! i W(n, kp"/n! = [(x — 2)(e* — 1)]*.
n=0

It follows that W(1, 1) =2, Wn, 1) =n—-2if n> 1, W(n, n) = (-2)" and

n—2

G8)  Wn+1,k)=-2Wmk-1)+ 3 (f)(n —r= D)W, k- 1).
r=0

It also follows from (3.7) that

W(n, k) = Zn: r!<¢> <I:> “2)¥"8(m -1, k),

r=0

(3.9)
S B =2 3 r1<"> <’ ;Lc k L 1) W -1, ),

r=0 r

where S(n, k) is the Stirling number of the second kind.
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Using the same method we used for V(n, k), we can derive the following recur-
rence:
2Wn+ 1, k) = (k + n)W(n, k) —4W(n, k — 1) —nkWn - 1, k)
+4nWn -1, k—1)—n(n—-DWn -2,k - 1).

It follows that W(n + 1, n) = 0. Also, the following table of values for W(n, k) can
be constructed.

(3.10)

nfk 12 3 4 5 6
1 -2

2 0 4

3 1 0 -8

4 2 -8 0 16

5 3 -20 40 0 -32

6 4 -26 120 -160 0 64

It follows from (3.7) that W(n, k) = B, «(-2,0,1,2,3,...). Therefore, by

Theorem 2.2, we have
13

3.11 — %) = _yyn—2k+j n P
(3.11) Won =k = 2 2) (2k g ,.) k-, K~ ),
which can be compared to (2.5). Since the summation in (3.11) really starts at j =
[(& + 1)/2], we see that W(n, n — k) is a polynomial in n of degree 2k — [(k + 1)/2].
We also have [2, p. 136], [5]:

j=0 I
(3.13) _ % L PR
V(n, k) j§o2 <]> W(n - j, k- ).

4. Relationship of V(n, k) to Special Numbers. We now show how the num-
bers defined in Section 2 can be expressed in terms of V(n, k). If we let

@.1) A(n, k) = V(n, k) — nV(n - 1, k)/2,

our main results are the following:

4.2) Vv, = g;o (—6)in!j!< 7 :[ i) Vin + 3j, )i + 3,
n1l o n+i

43 B =% 274 +,/”. :

@3) o= % raevin/("])

4) G,=n nf 47j1A(n - 1, j),

j=0
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n
4.5) 4, =3 nlU@ + 2, P+ 2.
=0
Since V(n, k) = B, ;,(0,0,1,2,3,...)and V, is defined by (2.8), we see
that (4.2) follows from Theorem 2.1. We note that also by Theorem 2.1 we have

n .
(4.6) W, =3 47Wn, j),
=1

where W, is defined by (2.10). Thus, by (3.9) and (4.6) we can express W, in terms
of the Stirling numbers:

@7 W, = g::l r‘:\'fo (=2 kit (’:) (’:) St —r, k).

Now define B;, by means of
“4.3) -2x[x-2)( -1 = > B x"/n.
n=0

If we multiply both sides of (4.8) by x — 2, it is easy to see that
4.9) B, = B, —nB,_,/2,
where B, is the Bernoulli number defined by (2.6). Also

n

B,=3 27"(n) B,

r=0

which follows from the expansions of x(¢* — 1)™! and (x — 2)"! in (4.8). Since
B, =R,(0,-2,0,1,2,3,...), we have, by Theorem 2.1,

(4.10) B, = z": 27V(n +, j)/<" ]+’>

j=1
P d —ifn+1 , . n+j
“4.11) Bn—j=zl2l<j+l>W(n+],])/<j >

Thus, if A(n, k) is defined by (4.1), we see that (4.3) follows from (4.9) and (4.10).
We proceed in the same way with the Genocchi numbers. Define G; by means
of

(4.12) —4[(x -2} + D] = Y Gx"/nl, so
n=0
n
@13) G, =nGy = (3)Ga G = T 27,6,

Since G, = R,(-4,0,0, 1, 2,3, ...), we have, by Theorem 2.1,

(4.14) G =3 4, j)
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and (4.4) follows from (4.13) and (4.14). We note that (4.4) gives us, for n > 3,
n—1 .

415 20-2™B,=n 3 47 4(n - 1,)).
=1

The upper limit in the sum can be replaced by [(n — 1)/3].
Now define A, by means of

(4.16) =X [x - 2)* —-x- 1] = i A x"/n!, so
n=0

4.17) A,=A,-nd,_\[2, A, = z"j 2"""(n),_A,-
: r=0

Since A, = R,(0,0,-2,1,2,3,...), we have, by Theorem 2.1,

n
(4.18) A, =3 nlj!lVn + 2, Dl + 2)!,
=1
and (4.5) follows from (4.17) and (4.18).
A generating function for A(n, k) is

A - x/2)[x( + 1) = 2(* — D]* = k! i A(n, k)" /n!,

n=3k
so we have
n
Vin, k) = 3 2"7"(n)AG, k).
r=3k
Since V(n, k) is an even integer for k¥ > 1, it follows from (4.1) that, except for
A(1,0) = =%, A(n, k) is an integer. Also, A(n, 0)=0ifn>1,4A(n, 1) =
(n—4)1 —n)/2, A(n, k) = 0 if n < 3k. A small table of values for A(n, k) follows.

nfk 1 2 3 4
5 =2
6 -5 10
7 -9 35
8 -14 28
9 -20 -294 280

10 =27 —2046 2800
11 =35 —8943 13860
12 —-44  -32252 27720 15400

5. The Numbers B, ,(a;, a;,3 —a,4 — ¢, ...). We now look at the results
of Sections 3 and 4 in a more general setting. It is convenient to use the following
notation:

¢.1) B, (ay, a3l0) =B, ;(@,;,8;,3 -, 4-0a,5-a,...),
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(52) R,(ay, ay, a,l0) = R, (ag,a,, 3,3~ 0,4~ .. .).

Our main results in this section are Egs. (5.11), (5.12) and (5.13) which generalize
(4.3), (4.4) and (4.5).

There are many special cases of (5.1) and (5.2) that are of interest. For ex-
ample,

B, (0, 210) = nS(n — k, k)/(n = k)1,
B, (0, 010) = n!S,(n - k, k)/(n = k),
B, (0,012) = ¥(n, k),

B, «(~2,012) = W(n, k),

B,(1,210) = (),

Bn,k(x, 2'0) = Z) i <I:> k —r)""k(x _ l)r,

r=0

B, 4(0,111) = ; 1)"—’< )k’Sl(n—r, %),

R,(0,0,0l0) =4,
R,(0,0,210) = B,
R,(0,1,210) = (-1)",

R, (0,2,210) =G, /(n + 1),
R,(0,0,012) =V,

R, (-4,-2,012) =W

R,(0,1-X,210) = H,(N), a function related to the Eulerian numbers [1],
R,(-1,0, 111) = d,, the number of derangements of 7.

By Theorem 2.1 we have

n -
(5.3) R, (ag, a;,a,l0) = > (—ao)"’]'!Bn’].(al, a,la),
=1

R (0 al’ a2la) - Z ( al)—]Bn+]](0 azla)/<n +]>

J

n + o
= i; )_,<n ! I>Bn+fri(al’ azla)/<n i ]> )

(5.4)
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n s s
R,(0,0,a,la) = 3 (- a,)"2n!j'B, . ,; A0, 0la)/(n + 2))!
=

(5.5)

n

= 5% Cay (1 1) By alon + 20,

R,(0,0,0l0) = Z (@- )”’n’]'6’<n + ;) B, 3,0, 0la)/(n + 3L,
=

(5:6) for a # 3.

We can now generalize the results of Section 4. Using the same reasoning we
used for a = 2, we see that for a # 0,

() B, =R,0,-a,2 —ala) -nR,_,(0, —q, 2 — ale)/a,

8 A,=R,0,0,-aley-nR, (0,0, —ala)/e,

(5.9) G,=nR, (20,2 -, 2 ~ale)—n(n - 1R, ,(-2a,2 ~a,2 - ala)/a,
510)-1)'=R,(-a,1-0a,2—ale)—nR,_;(~o, 1 —a, 2 - ala)/e.

Letting A, ;(a;, ay|a) =By, 4(a;, a;10)~nB,_, ,(a,, a;|&)/a and combining (5.3)—
(5.5) and (5.7)—(5.10), we have

(5.11) Za 140,10, 2 —ala)/ " +J
5.12) G, = i: nQo A,y (2 a2 - ala),

=
(5.13) Coa,- g 2aInfIAL 4 (0, 0la)/(n + 24)!,
(5.14) 1y = Z oIl (1 -a, 2 - alo).

=0
Thus (5.6), (5.11), (5.12) and (5.13) generalize (4.2)—(4.5).
By Theorem 2.2 we have

kooajfntk |
(5.15) B, n(ay, a3le) = Zl a’ Ptk B; 11,0, a3 1),
]:

, k (a,\"7T  (2n +k)!
516) Bypiin@al0)= 3 (2) == By (0, Ola),

=1 (n—NWY + )

ind there are other similar formulas, of which (3.12) and (3.13) are special cases [5].
Using exactly the same method we used to derive (3.1), we can find a recurrence
ormula for B, ,(a;, a,10). Letting B, , = B, ,(a,, a,|c), we have

B, 1k = =[n+(- l)k]Bn k " knB,_y ot coBy gy t e B,y 4y

+n(n — 1)c,B,_5 4y +n(n—1)n—2)3B, 3,4,
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where
co = 4,0,
¢ = alay —ay),
c, =—a*2+ (3 —ay)ef2 +a, —a,/2,
c3=0af2-1+a,/2.

Also,By o =1,B,,=0ifn>0,B, , =n-aifn>2,B, ,=0ifn <k
Finally, as an application of formulas (5.3)—(5.6), we show how some of the
formulas in [2], [10] and [11] involving Bernoulli and Stirling numbers can be proved.
Using the special values of B, ,(a;, a, lo) and R, (aq, a,, a, |o) listed earlier, we have,

from (5.3)—(5.6) and (5.15),

G17) 1P =3 1Y@ ) [10, p. 170],
=1
(5.18) an 1)1<” N 1) St +j, ])/< ) [10, p. 219],
j=1
519) B, =3 C1¥S,(n, f)/(";”) [10, p. 5991,
j=1
(5.20) z"; niS(k, n — /it = i <”> (=) - 1Y,
j=0 =o\/J
(521) S(n, k) = Z (—1)j< >(k Nk 12, p. 206],
j=1
(5.22) k'S(n, k) = k" - Z (®);S(n, 1) [2, p. 209],
=
(5:23) Cusr = zl 2)77710n + 1S, 1),
]=
(5.24) H0 =3 10— 10750, A #1), 1],
j=1

(525) 4, Z S 1)’(” * 1>S (n+2j, J)/<" +2’> [13...@ -1, [6].

6. Inverse Array for W(n, k). If W(n, k) is defined by (3.7), it is possible to
find an inverse array (w(n, k)) (n =0,1,2,...;k=0,1,...,n)such that

(6.1) an 27 W, Kwk, ) =5, ; = f w(n, k)-2)7W(k, 7).

k=j k=j
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By using a method described by L. Carlitz (‘A special class of triangular arrays,”
Collect. Math., v. 27, 1976, pp. 23—58), we shall prove

6. ok fn+r-1 (k+r-1) —r
(6.2) w(n, k)—r§0< , >——(k—l)! 27"s(n, k + 1),

where s(n, k + r) is the signed Stirling number of the first kind [2, p. 212]. The au-
thor wishes to thank Professor Carlitz for his suggestions concerning this section.
We begin by defining f(z) = (1 — z/2)(¢* — 1), so that

oo n

exp(xflz2) =1+ 3 Z—' i 2 *Wn, k)xk.
k=1

n=1 N:

If £(2) is the inverse of f(z), i.e. f(g(2)) = g((z)) = z, we define w(n, k) by means of

n

(6.3) exp(xg2)) =1+ 22 — 3 win, k¥,
n=1 h! =1
and by the results in the Carlitz paper mentioned above, (6.1) follows.

We can find g(z) and, more generally, £¥(z) by means of the Lagrange inversion
formula [2, p. 148]. We have

oo Z" dn—k B x n
@) = ngl pry [k(n -1 dx"—k<(1 - x/2)! = 1> ]x =0

and from the expansions

A-x2y"=3 <” treo ‘)z—'x',

r=0 r

©o

() = o= 5 (") s n e

i=0

[2, p. 228], we have

o N n—k —
64 f@=3 —|ty <” tr 1) (+r-1)27s(n, k+7) |
n=1n!'| ;=0 r
Formula (6.2) now follows from (6.3) and (6.4).
It follows from (6.2) that w(n, n — k) is a polynomial in n of degree 2k. We
can write

2% n
win,n-k)=3 wkj) <2k _].>,
=0

though it appears difficult to find a generating function for w'(n, k). It also appears
difficult to find a recurrence for w(n, k). A small table of values for w(n, k) follows.
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nk 0 1 2 3 4 5 6
0 1

1 1

2 0o 1

3 12 0 1

4 1 2 o0 1
5 4 s 5 0 1
6 39/2 532 15 10 0 1

From (6.1) we have w(n, n) = 1, win, n — 1) = 0, w(n, n — 2) =
D227 Wn, n - 2), w(n, n - 3) = (—1)"23"W(n, n - 3).
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